

Available online at www.sciencedirect.com

Binuclear metallophthalocyanine supported on treated silk fibres as a novel air-purifying material

Yuyuan Yao a, Wenxing Chen b,*, Shenshui Lu b, Baoyan Zhao b

^a College of Textiles, Donghua University, Shanghai 200051, PR China
^b Colleges of Materials and Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Educational Zone, Hangzhou 310018, PR China

Received 30 July 2005; received in revised form 11 August 2005; accepted 22 November 2005 Available online 25 January 2006

Abstract

Two kinds of water-soluble metallophthalocyanines, binuclear phthalocyaninecobalt(II) (Co_2Pc_2) and binuclear phthalocyanineiron(III) (Fe_2Pc_2), have been investigated as catalysts for the oxidation of 2-mercaptoethanol (MEA). In aqueous solution, Co_2Pc_2 exhibited higher catalytic activity than Fe_2Pc_2 at pH 11 and 25 °C. Furthermore, synergistic effect had been found when two catalysts were mixed at molar ratio of 1:1, which was deeply discussed. To make best use of such perfect catalytic oxidation performance, a new supporting method was introduced to prepare the novel air-purifying material, binuclear metallophthalocyanine fibres (Mt_2Pc_2F). Mt_2Pc_2F could be used to eliminate efficiently the malodors of methanthiol and hydrogen sulfide by catalytic oxidation reaction.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Binuclear metallophthalocyanine; Catalytic oxidation; Synergistic effect; Silk fibres; Air-purifying material; Malodors

1. Introduction

Indoor air quality has become one of the most serious environmental concerns since a person spends about 22 h indoors on a daily basis [1,2]. Indoor air contains different types of air pollutants, including Volatile Organic Compounds (VOC) emitted from various sources, e.g. building materials, paints and other consumable products [3]. These pernicious gases have resulted in various diseases in humans, such as headache, nausea, eye irritation, sore throats, dizziness and fatigue [4,5]. Therefore, various treatment methods for eliminating indoor air pollutants have been extensively studied, including physical, chemical, biological and photocatalytic methods [6–8]. Traditional physical adsorbents such as charcoal and filtering materials have successfully reduced the concentration of pernicious indoor gases in some cases.

However, the effectiveness of these removal materials is limited for a short period due to their removal capacities, and even they could not remove these pernicious indoor gases completely.

Environmental and safety regulations have become the strong driving force for the development of green technologies that avoid the use of toxic chemicals and minimize the generation of waste. Biotreatment is a promising technology for the abatement of pernicious indoor gases. Natural enzymes as biological catalysts are characteristic of high speed, specificity, sensitivity and mild reaction conditions, but they have no high temperature resistance and cannot be used in organic solvent. Therefore, an exploration for mimic enzyme has evoked a great deal of interests. Till date, the mimesis of cytochrome P-450 has mainly been focused on metalloporphyrin compounds since heme is the active center of P-450 [9,10]. However, synthetic metalloporphyrins often degrade during the catalytic process. One way of circumventing this problem has been to create a more resistant porphyrin ring through ring substitution using electron withdrawing axial ligands [11,12].

^{*} Corresponding author. Tel.: +86 571 86843611; fax: +86 571 86843251. *E-mail addresses:* yyy0571@126.com (Y. Yao), chenwxg@yahoo.com.cn (W. Chen).

As an analogue to porphyrin, phthalocyanine compounds have also been widely used as an oxidase-like enzyme, mainly due to their chemical, optical and thermal stability [13,14]. What's more, metallophthalocyanine complexes are often more easily prepared than metalloporphyrins. In principle, metallophthalocyanines have shown great catalytic activity under ambient conditions and high oxidants, acids, and alkalis resistance [15].

Natural enzymes are macromolecules. The macromolecules offer ideal frames for construction of versatile and robust catalytic sites. In comparison with natural enzymes, most artificial enzymes are small molecules. Therefore, one limitation of these catalysts is that they are inconvenient to be used in some fields because they are generally available only as powder or in solution. An efficient strategy for their practical use might be to attach them to a suitable support material.

Several types of supports have been used for this purpose, such as charcoal, organic polymers silica, zeolites, etc. [16–18]. Comparing to these materials, fibres may be the ideal candidates because they are easy to handle and provide a large contacting surface for harmful gases. China is very rich in silk, and there is a large quantity of waste silk that can be exploited. Silk fibres (SF) composed of 18 kinds of amino can be treated structurally by many chemical and physical methods. In this paper, two kinds of water-soluble binuclear metallophthanines (Mt₂Pc₂), binuclear phthalocyanineiron(III) (Fe₂Pc₂) and binuclear phthalocyaninecobalt(II) (Co₂Pc₂), were prepared, and both of them had perfect catalytic activity on 2-mercaptoethanol (MEA). Higher catalytic activity can be obtained when Fe₂Pc₂ and Co₂Pc₂ were mixed in equal molar quantity in aqueous solution. To take advantage of such excellent properties in practical way, Mt₂Pc₂ was supported on cationic silk fibres (CSF) to obtain air-purifying materials (Mt₂Pc₂CSF). Such materials showed high performance to eliminate CH₃SH and H₂S by catalytic oxidation reaction.

2. Experimental

2.1. Reagents and instruments

Pyromellitic anhydride and ammonium molybdenum were purchased from Shanghai Pharmaceutical Co., Ltd. (Shanghai, China). SF, marseilles soap, cationic agent MA (Scheme 2) and levelling agent Peregalo were donated by Dying and Finishing Lab in Zhejiang Sci-Tech University. Methanthiol (20%, w/w) was obtained from the Shanghai Research Institute of Flavour and Fragrance Industry. Hydrogen sulphide was prepared by reaction of sodium sulphide solution (20%, w/w) with phosphoric acid (10%, w/w). All the other solvents and reagents were of analytical grade and used without further purification.

PHS-3C precise pH meters (Shanghai REX instrument factory), U-3010 UV—vis Spectrometer (Hitachi), FT-IR Spectrometer (Perkin Elmer Spectrum one) and elemental analysis apparatus (Carlo-Erba 1106) were used to confirm the structure of Mt₂Pc₂. Precise gas detector tubes (Gastec Company in Japan) were directly used to test the concentrations of the odors.

2.2. Synthesis of binuclear metallophthalocyanine derivatives

According to the literatures [19], two kinds of planar binuclear metallophthalocyanines were synthesized by phenylanhydride—urea route, and their reactive processes are shown in Scheme 1. The products were purified to obtain Co₂Pc₂ and Fe₂Pc₂ [20], and their final yields were 24.59% and 19.12%, respectively.

2.3. Measuring the catalytic ability of binuclear metallophthalocyanine on MEA

The catalytic rate of the oxidation on MEA in aqueous solution was evaluated on the basis of the consumption of oxygen, measured using a self-made gas burette. The whole process was carried out at constant temperature.

2.4. Preparation of Mt_2Pc_2F

Two grams of SF was treated in the aqueous solution of MA (50 g L $^{-1}$), Na₂OH (15 g L $^{-1}$) and Permeater JFC (2 g L $^{-1}$), with bath ratio 1:50, at 60 °C for 60 min. The SF was then washed with hot water, acetic acid solution (2 g L $^{-1}$) and cool water, respectively, obtained cationic silk fibres (CSF). SF or CSF was put into the solution of Mt₂Pc₂ and levelling agent Peregalo (pH 4.5), supported 0.8% (w/w) Mt₂Pc₂ by controlling reaction conditions, washed with distilled water and dried in oven at 60 °C to obtain Mt₂Pc₂SF and Mt₂Pc₂CSF.

It was mentioned above that the carboxyl, hydroxyl and amino, etc. on SF could react with MA. Taking carboxyl for example, the reaction process was illustrated in Scheme 2. SF was initially treated with MA in order to provide a bridge group for the Mt₂Pc₂. The cationic tetra-alkylammonium (MA) on CSF had a strong electrostatic attraction to the dissociated carboxyl groups on Mt₂Pc₂ molecule. Thus, Mt₂Pc₂ can become bound to CSF to provide the deodorant package. The whole process of treatment and dyeing for SF is given in Scheme 2.

2.5. Measuring the deodorant performance of Mt₂Pc₂F

Two grams of Mt_2Pc_2F was suspended in a 5 L flask, in which quantitative malodors were injected, and then the concentrations of malodors were measured by corresponding gas detector tubes. The deodorant ability of Mt_2Pc_2F on malodors was determined by the concentration change.

3. Results and discussion

3.1. Characterization of binuclear metallophthalocyanine

The results of the purified Co_2Pc_2 and Fe_2Pc_2 for elemental analysis are given as follows: Calcd. for Co_2Pc_2 , $C_{70}H_{26}O_{24}N_{16}Co_2\cdot 4H_2O$: C, 50.49%; H, 2.06%; N, 13.46%.

Scheme 1. The reactive scheme for preparing binuclear metallophthalocyanine [Mt = Co(II), Fe(III)].

Found: C, 50.12%; H, 2.10%; N, 13.49%. Calcd. for Fe₂Pc₂, $C_{70}H_{26}O_{24}N_{16}Fe_2 \cdot 4H_2O$: C, 50.68%; H, 2.07%; N, 13.51%. Found: C, 50.32%; H, 2.11%; N, 13.56%. The IR spectra of synthetic Co_2Pc_2 and Fe_2Pc_2 were shown in Fig. 1. The absorption peaks at 1261, 1066, 796, and 746 cm⁻¹ in Fe₂Pc₂ were assigned to phthalocyanine, and the strong absorption peak at

 $1704~\text{cm}^{-1}$ was due to the carboxylic acid groups in Fe₂Pc₂. The absorption peaks at 1134, 1093, 771, and 745 cm⁻¹ in Co₂Pc₂ were assigned to phthalocyanine, and the strong absorption peak at $1704~\text{cm}^{-1}$ was due to the carboxylic acid groups in Co₂Pc₂. Synthesized products were further confirmed according to the literatures [21].

Scheme 2. Mt₂Pc₂ supporting on SF treated by MA.

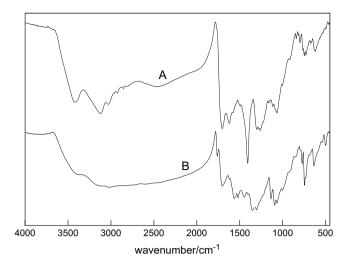


Fig. 1. IR spectra of Mt₂Pc₂ (A, Fe₂Pc₂; B, Co₂Pc₂).

3.2. Catalytic activity of binuclear metallophthalocyanine in aqueous solution

 $\rm Mt_2Pc_2$ (150 mL, $1.0\times 10^{-5}~\rm mol\,L^{-1}$) aqueous solution was placed in the airtight system, and then 10 mL MEA (20%, w/w) was added. The initial reaction velocity, $V_o = -d[O_2]/dt~\rm (mol^{-1}~\rm s^{-1})$, was taken from the slope of the oxygen consumption in the reaction system. The dependence of V_o on pH in oxidation reaction is shown in Fig. 2. V_o increased as pH rose from 5 to 11 and reached the maximum at pH 11, but it drastically decreased above pH 11. This behavior was considered to be attributable to the dissociation of RSH, and RS $^-$ was easy to coordinate with the central metal ion in phthalocyanine below pH 11. The excess OH $^-$ above pH 11 hindered the coordination of RS $^-$ with the central metal ion in phthalocyanine, leading to a fall in catalytic ability. In addition, it could be observed that $\rm Co_2Pc_2$ had higher catalytic ability than $\rm Fe_2Pc_2$ from Fig. 2. To further verify the phenomenon, the catalytic ability of $\rm Fe_2Pc_2$ and $\rm Co_2Pc_2$

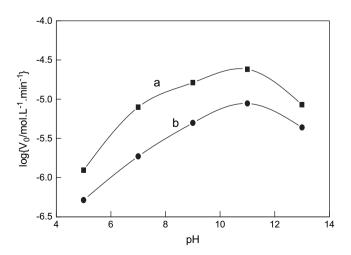


Fig. 2. Effect of pH on the catalytic activity of Co_2Pc_2 and Fe_2Pc_2 to oxidize MEA ($T=25~^{\circ}C,~[O_2]_0=8.59\times10^{-3}~mol~L^{-1}$, a: Co_2Pc_2 and b: Fe_2Pc_2).

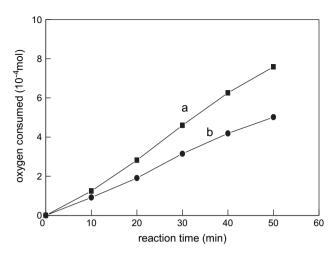


Fig. 3. Comparison of catalytic oxidation activity between Co_2Pc_2 and Fe_2Pc_2 on MEA $(T=25~^{\circ}C,~pH=11,~[O_2]_0=8.59\times10^{-3}~mol~L^{-1},~a:~Co_2Pc_2$ and b: Fe_2Pc_2).

was measured at pH 11 and 25 °C, as shown in Fig. 3. The results showed that the catalytic ability of Co₂Pc₂ was higher than that of Fe₂Pc₂, which agreed well with the results in Fig. 2.

An interesting phenomenon was observed that Co_2Pc_2 and Fe_2Pc_2 mixture ($CoFePc_2$) showed higher catalytic ability on MEA than individual Co_2Pc_2 and Fe_2Pc_2 under the same conditions, i.e. pH 11 and 25 °C, in aqueous solution (Fig. 4), and even the catalytic ability was the best at the molar ratio 1:1 of Co_2Pc_2 and Fe_2Pc_2 . The reason for higher catalytic ability of the mixture attributed to their synergistic effect. The mechanism [22,23] of catalytic oxidation on mercaptan (RSH) by metallophthalocyanine is shown in Fig. 5. The central metal ion in phthalocyanine coordinates with RS $^-$ given by RSH, which then combines with O_2 molecule to form ternary complex, and the single-electron transfers from RS $^-$ to O_2 through a central metal in phthalocyanine ring, forming the radicals RS $^{\bullet}$ and $O_2^{\bullet-}$. The single-electron transfer process is the rate-determining step in the oxidation reaction [24]. Following

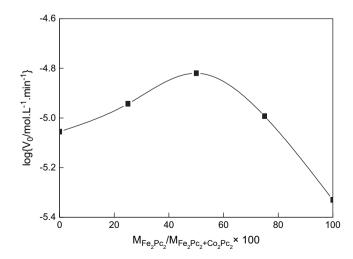


Fig. 4. Dependence of the Co_2Pc_2 and Fe_2Pc_2 ratio on the catalytic activity to oxidize MEA ($T=25\,^{\circ}\text{C}$, pH = 11, $[\text{O}_2]_0=8.59\times 10^{-3}\,\text{mol}\,\text{L}^{-1}$).

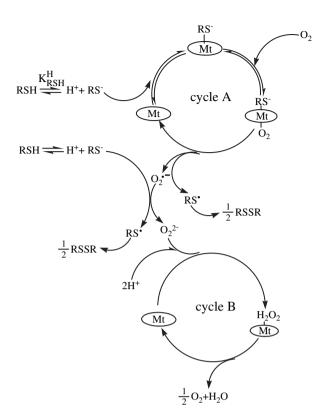


Fig. 5. Mechanism of catalytic oxidation of mercaptan (RSH) by metallophthalocyanine.

the rate-determining step, the succeeding steps are rapid: $O_2^{\bullet -}$ reacts with the other RS⁻, forming RSSR and O_2^{2-} . O_2^{2-} reacts with H⁺, giving H₂O₂. Finally, H₂O₂ is decomposed by the catalysis-like reaction to O₂ and H₂O. Fig. 5 demonstrated that the whole catalytic reaction was composed of cycles A and B. The higher catalytic ability of FeCoPc₂ probably owned to synergistic effect in both cycles A and B. In order to further confirm our presumption, the catalytic ability of Co₂Pc₂ and Fe₂Pc₂ on H₂O₂ was investigated at pH 11 and 25 °C. In the same airtight system, 150 mL Co₂Pc₂ or Fe₂Pc₂ $(1.0 \times 10^{-5} \text{ mol L}^{-1})$ aqueous solution was added, and 10 mL H₂O₂ (20%, w/w) was put into the same reactor. The catalytic ability of Mt₂Pc₂ was evaluated by oxygen evolved (Fig. 6). The oxygen evolved of Fe₂Pc₂ was obviously higher than that of Co₂Pc₂. Especially at the beginning of the reaction, the oxygen evolved from Fe₂Pc₂ was approximately three times as much as that of Co₂Pc₂. However, oxygen evolved got stable gradually with the reaction going on, which attributed to the remarkable decrease of H₂O₂. Obviously, Fe₂Pc₂ on H₂O₂ had much higher catalytic ability than Co₂Pc₂ in cycle B, but Fig. 3 revealed that the catalytic ability of Co₂Pc₂ on MEA was much better than that of Fe₂Pc₂ in the whole reaction, so it was evident that the catalytic ability of Co₂Pc₂ on MEA was greater than that of Fe₂Pc₂ in cycle A. It was easy to explain why the mixture had much higher catalytic ability than individual Co₂Pc₂ and Fe₂Pc₂. In the process of the whole reaction, Co₂Pc₂ was adept in cycle A, but Fe₂Pc₂ specialized in cycle B. The synergistic effect between Co₂Pc₂ and Fe₂Pc₂ resulted in higher catalytic oxidation ability of CoFePc2 on MEA.

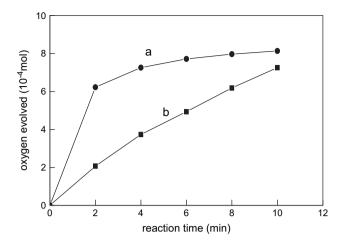


Fig. 6. Rate of decomposing H_2O_2 by binuclear metallophthalocyanines (pH = 11, T = 25 °C, [H_2O_2]₀ = 1.84 mol L⁻¹, a: Fe₂Pc₂ and b: Co₂Pc₂).

3.3. Deodorant performance of Mt₂Pc₂F

In aqueous solution, Mt₂Pc₂ had excellent catalytic oxidation ability on MEA. However, Mt₂Pc₂ as an artificial enzyme is a small molecule and is generally available only as powder or in solution, so it is inconvenient to directly eliminate the most common malodors of CH₃SH and H₂S. A better strategy is needed to fix them onto support that can be used repeatedly. SF is natural macromolecules, and it probably offers ideal frames for construction of versatile and robust catalytic sites. SF is selected as the support to prepare Mt₂Pc₂F. Mt₂Pc₂F is expected to efficiently remove CH₃SH and H₂S at room temperature. Co₂Pc₂ was supported on SF and CSF, respectively, obtained Co₂Pc₂SF and Co₂Pc₂CSF, and their deodorant performances on CH₃SH were tested, as shown in Fig. 7. It illustrated that SF without supporting Co₂Pc₂ only eliminated a little CH₃SH, and both Co₂Pc₂SF and Co₂Pc₂CSF had better catalytic ability on CH₃SH. In addition, it also indicated that the catalytic ability of Co₂Pc₂CSF on CH₃SH was much better than that of Co₂Pc₂SF, which may be attributable to different

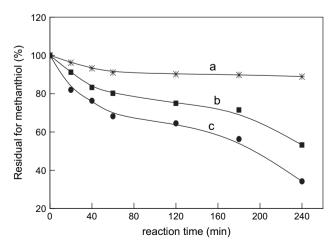


Fig. 7. Speed of oxidizing CH₃SH by SF loaded Co_2Pc_2 ([CH₃SH]₀ = 100 ppm, T = 25 °C, a: SF, b: Co_2Pc_2SF , and c: Co_2Pc_2CSF).

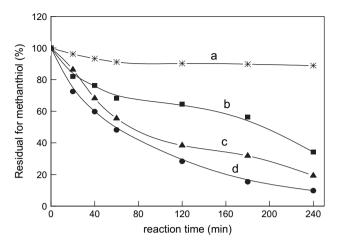


Fig. 8. Rate of oxidizing CH₃SH by Mt₂Pc₂CSF ([CH₃SH]_o = 100 ppm, T = 25 °C, a: SF, b: Co₂Pc₂CSF, c: Fe₂Pc₂CSF, and d: CoFePc₂CSF).

microenvironments. Some groups in SF such as amino coordinated easily with the central metal ion in metallophthalocyanine, so the rival effect, amino scrambled for the central metal ion with CH₃SH, occurred, leading to the decrease of the catalytic ability for metallophthalocyanine. After SF were treated by MA, most of coordination groups such as amino were shielded, and the catalytic ability of metallophthalocyanine was improved, so the deodorant performance of Co₂Pc₂CSF on CH₃SH was better than that of Co₂Pc₂SF.

Co₂Pc₂ and Fe₂Pc₂, respectively, were loaded on 2 g CSF to obtain Co₂Pc₂CSF and Fe₂Pc₂CSF, and their deodorant performances on CH₃SH and H₂S were tested at room temperature, as shown in Figs. 8 and 9. In comparison with SF, both Fe₂Pc₂CSF and Co₂Pc₂CSF had excellent deodorant ability on CH₃SH and H₂S. Figs. 8 and 9 indicated that the deodorant performances of Fe₂Pc₂CSF on CH₃SH and H₂S were better than that of Co₂Pc₂CSF. Furthermore, when equally molar Fe₂Pc₂ and Co₂Pc₂ were mixed and supported on CSF, cationic silk fibres supported mixed binuclear metallophthalocyanine

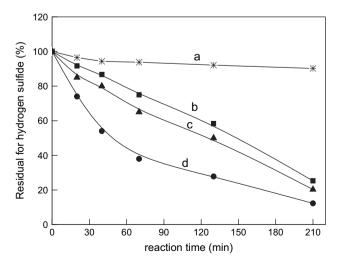


Fig. 9. Rate of oxidizing H_2S by Mt_2Pc_2CSF ($[H_2S]_0 = 100$ ppm, T = 25 °C, a: SF, b: Co_2Pc_2CSF , c: Fe_2Pc_2CSF , and d: $CoFePc_2CSF$).

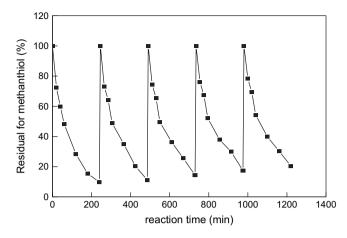


Fig. 10. Deodoring speed for CH₃SH in five runs by CoFePc₂CSF (T = 25 °C).

(CoFePc₂CSF) was obtained, and the best deodorant activity can be obtained, as shown in Figs. 8 and 9. It could be explained that synergistic effect existed, analogous to CoFePc₂ in aqueous solution. At room temperature, Mt₂Pc₂CSF can be used repeatedly. In order to further investigate the repeated use, CoFePc2CSF was selected to test the catalytic ability on CH₃SH. CoFePc₂CSF (2 g) was suspended in a 5 L flask, and quantitative methanthiol was injected into the flask. Most of CH₃SH was removed after about 240 min, so the supplement of methanthiol was added to keep the initial concentration of 100 ppm. The initial and subsequent concentrations of CH₃SH were measured using a gas detector tube. The same procedure was repeated five times, and their results were shown in Fig. 10. It proved that there was no remarkable decrease for catalytic activity of Mt₂Pc₂. Therefore, Mt₂Pc₂CSF had great deodorant ability on CH₃SH, and Mt₂Pc₂ acted as a catalyst in the oxidation for malodors.

4. Conclusions

Two kinds of binuclear metallophthalocyanines, Fe₂Pc₂ and Co₂Pc₂, showed high catalytic oxidation ability on MEA in aqueous solution. It was significantly found that the catalytic oxidation ability of Co₂Pc₂ and Fe₂Pc₂ mixture was the greatest at the molar ratio 1:1, which attributed to synergistic effect between Fe₂Pc₂ and Co₂Pc₂. At room temperature, the deodorant performance of Co₂Pc₂CSF was better than that of Co₂Pc₂SF. Mt₂Pc₂CSF had perfect deodorant performances on CH₃SH and H₂S, and even the deodorant performance of CoFePc₂CSF was the best.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No. 50373038), Program for New Century Excellent Talents in University (NCET-04-0559) and Key International Cooperation of Science and Technology of Zhejiang.

References

- Ayoko GA, Morawska L, Kokot S, Gilbert D. Environ Sci Technol 2004; 38:2609.
- [2] Akimoto H. Science 2003;302:1716.
- [3] Pan ZW, Kjaergaard SK, Molhave L. Int Arch Occup Environ Health 2003;76:598.
- [4] Keady PB, Halvorsen T. J Nanopart Res 2000;205.
- [5] Kaiser J. Science 2000;289.
- [6] Abreu LDV, Johnson PC. Environ Sci Technol 2005;39:4550.
- [7] Daniel LP, Robert BS, Sidney A, Crow J, Donald GA. J Ind Microbiol Biotechnol 2005;32:319.
- [8] Zhang C, Hong H, Ken-Ichi T. Catal Commun 2005;211.
- [9] Zhang XB, Guo CC, Xu JB, Yu RQ. J Mol Catl A Chem 2000;154:31.
- [10] Moore KT, Horvath IT, Therien M. J Inorg Chem 2000;39:3125.
- [11] Battioni PE, Louloudi M, Schollhorn B, Spyroulias GA, Mansuy D, Traylor TG. Chem Commun 1996;2037.
- [12] Bonsalves AMR, Serra AC. J Porphyrins Phthalocyanines 2000;598.

- [13] Gao WT, Zhang SF, Yang JZ, Huang L. Dyes Pigments 2000;155.
- [14] Nanda AK, Kishore K. Macromolecules 2001;34:1558.
- [15] Sorokin A, Suzzoni-Dezard S, Poullain D. J Am Chem Soc 1996;118:7410.
- [16] Iftime G, Labarthet FL, Natansohn A, Rochon P, Murti K. Chem Mater 2002;14:168.
- [17] Vankelecom IFJ, Parton RF, Casselman MJA, Uytterhoeven JB, Jacobs PA. J Catal 1996;163:457.
- [18] Wohrle D, Buck T, Hundorf U, Schulz-Ekloff G, Andreev A. Makromol Chem 1989;190:961.
- [19] Leznoff C, Sebastian M, Marcuccio W, AndrewNevin P, Kobayashi N, Lever AB. J Chem Soc Chem Commun 1987;699.
- [20] Shirai H, Hanabusa K, Kitamura M, Masuda E. Makromol Chem 1984; 185:2537.
- [21] Kobayashi N, Lam H, AndrewNevin W. J Am Chem Soc 1994;116:879.
- [22] Pan Y, Chen WX, Lu SF, Zhang YF. Dyes Pigments 2005;66:115.
- [23] Shirai H, Tsuiki H, Masuda E, Koyama T, Hanabusa K. J Phys Chem 1991;95:417.
- [24] Kobayashi N, Shirai H, Hojo N. J Chem Soc Dalton Trans 1984;2107.